DoD Plug-In Electric Vehicle Program

The DOD V2G Pilot Project
Overview

Presented by
Camron Gorguinpour, PhD
Office of the Assistant Secretary of the Air Force
Installations, Environment & Logistics
Camron.Gorguinpour@pentagon.af.mil
Overview

- DOD PEV Program Summary
- V2G Services & Case Study
- DOD V2G Demonstration
- Conclusion
PEV Program

GOALS
- Develop knowledge base/technology/skill sets to implement PEV strategy
- Develop proof of concepts to show PEVs can meet energy directives
- Explore related benefits of PEV technology, to include revenue generation
- Initiate large scale integration of PEVs into DOD non-tactical ground fleet

OBJECTIVES
- Develop strategy to initiate large scale PEV implementation considering:
 - PEVs must meet mission requirements
 - Total cost of ownership for vehicles and infrastructure
 - Vehicles acquired at cost parity
 - Requisite RDT&E activities
Activities Completed to Date

- Worked with GSA to develop PEV residual value and lifecycle cost model
- Implemented detailed PEV charging infrastructure analyses at 16 DOD installations, including cost-benefit analysis for V2G
- Initiated effort to make Los Angeles AFB the first federal facility to convert its entire general purpose fleet to PEV’s
- Completed thorough business case analysis for V2G and non-V2G fleet electrification efforts
- Executed four Requests for Information (RFIs), two industry events, and extensive market research
- Launched V2G Pilot Initiative on 6 DOD installations
 - Additional V2G work ongoing at Ft Carson, Wheeler AAF & Port Hueneme
V2G Ancillary Services

- **Power (MW)**
- **Time of Day**

Spinning Reserves
Extra generation available to serve load in case of unplanned event
Good match for V2G

Aggregate Daily Load Curve
Peak Power Shaving
Generation at times of high power demand
May be used for V2G

Frequency Regulation
Used to regulate frequency and voltage of the grid by matching instantaneous generation supply to load demand
Best match for V2G
Where is frequency regulation valuable?

[Map of Regional Transmission Organizations]
Case Study: EV Fleet Sedan in Southern California

- **Assumptions:**
 - Lease Price: $200/month
 - 15kw bi-directional capability
 - Participation in Frequency Regulation Market only
 - 12,000 miles driven per year
 - Typical operation from 9am to 5pm
 - 2011 remuneration values for California ISO, in Southern California
V2G Case Study (cont’d)

- How much was 15kw of bi-directional capacity worth in 2011?
 - Southern California (south of Path 26) remuneration for 2011 was approximately $168/kw for storage available 24/7
 - Assumes resource is simultaneously participating in both up- and down-regulation markets
 - Total value of approximately $2,520 for the year or $210/month
 - Markets are highly variable by both time of day and time of year
 - Markets are open 24/7 for 365 (or 366) days per year

- Bottom line: Frequency Regulation alone can reduce the monthly lease price of a PEV sedan by about 72%.
 - Frequency regulation revenues are expected to rise as natural gas prices increase and per the implementation of FERC Order 755
V2G Case Study (cont’d)

- Assuming vehicles are “used” during normal business hours (8am-5pm, M-F), approximately 73% of frequency regulation value is retained.
 - Financial value does not change in non-business hours

- What does this mean for leasing a V2G-capable sedan?

<table>
<thead>
<tr>
<th>ICE Sedan</th>
<th>V2G Sedan</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSA lease price: $174/month</td>
<td>Base lease price: $200/month</td>
</tr>
<tr>
<td>Operating cost ($0.145/mile):</td>
<td>Operating cost ($0.06/mile):</td>
</tr>
<tr>
<td>$145/month</td>
<td>$60/month</td>
</tr>
<tr>
<td>Net Cost: $319/month</td>
<td>V2G value: $150/mo</td>
</tr>
<tr>
<td>Net Cost: $110/month</td>
<td>Net Cost: $110/month</td>
</tr>
</tbody>
</table>

Net Savings for V2G: $209/month
Impact of V2G Activities on Batteries

Truck

Truck Total Energy Cycles

<table>
<thead>
<tr>
<th>Energy cycles per year</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Driving</td>
<td>240</td>
<td>cycles at</td>
<td>39%</td>
<td>% SOC/day</td>
</tr>
<tr>
<td>Peak-shaving</td>
<td>72</td>
<td>cycles at</td>
<td>60%</td>
<td>DOD/day</td>
</tr>
<tr>
<td>Frequency Regulation</td>
<td>61,020</td>
<td>cycles at</td>
<td>2.1%</td>
<td>Ave. change in SOC%/cycle</td>
</tr>
<tr>
<td>Other</td>
<td>24</td>
<td>cycles at</td>
<td>60%</td>
<td>DOD/day</td>
</tr>
</tbody>
</table>

Auto

Auto Total Energy Cycles

<table>
<thead>
<tr>
<th>Energy cycles per year</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Driving</td>
<td>240</td>
<td>cycles at</td>
<td>50%</td>
<td>% SOC/day</td>
</tr>
<tr>
<td>Peak-shaving</td>
<td>72</td>
<td>cycles at</td>
<td>60%</td>
<td>DOD/day</td>
</tr>
<tr>
<td>Frequency Regulation</td>
<td>61,020</td>
<td>cycles at</td>
<td>2.1%</td>
<td>Ave. change in SOC%/cycle</td>
</tr>
<tr>
<td>Other</td>
<td>24</td>
<td>cycles at</td>
<td>60%</td>
<td>DOD/day</td>
</tr>
</tbody>
</table>
V2G Project Scope

- Initiate large-scale testing and evaluation program for PEVs on 6 installations (DOD-wide) in four regions, with the following features:
 - 100-500 PEVs with V2G capability
 - LD pick-up trucks
 - LD cargo/passenger vans
 - MD/HD trucks and vans
 - Buses
 - One V2G-capable charging station per PEV
 - Specialized software to manage PEV fleet with V2G capability
 - Training for multiple DOD constituencies
 - Sustainment for PEVs, infrastructure, and software
 - Program management and systems integration
- Demonstrate financial and operational benefits of a V2G fleet
- Option to expand up to 1,500 PEVs on up to 30 installations
System Architecture

- Electrical Service Tap (208V or 480V AC)
- Electrical Service (120V AC)

- System contained within installation master meter, but sub-metered separate from any other base load or source.

- Aggregator

- External communications occur via cellular modem. Charging stations communicate to aggregator via redundant Ethernet cables. All communications are separate from base LAN.
V2G Fleet Management

- Software system is central to execution
- Fleet management tool is primary user interface
 - User tells system when each vehicle will be used and where it will be travelling
 - Statistical planning eventually feasible
- System projects charge state of battery upon return and produces charging schedule for next use
 - Charging schedule optimized for cost
- On top of charging schedule, system bids into relevant energy/power markets
- System dispatches relevant signal from utility/ISO/facility to charging stations
V2G Operational Considerations

- Mission requirements are always top priority
 - V2G activities may be superseded at any time, regardless of financial loss
 - DOD may restrict market participation to mitigate risk of non-compliance

- Human factors will likely pose greatest challenge
 - Car not “returned” until it’s parked in a designated location and plugged in
 - Requires a much greater level of planning than conventional fleet management

- V2G may create opportunities to enhance mission capabilities that would otherwise be unattainable
Conclusion

- There is a pathway for fleets to procure PEV’s at total cost of ownership parity (or better) with conventional vehicles
- V2G is an essential element to satisfy financial constraints on DOD’s fleet electrification efforts
- Additional operational and tactical benefits occur with the implementation of V2G technologies
- Bureaucratic barriers are more substantial than technical barriers to actualization of V2G program
- DOD is committed to exploring avenues that will bring V2G technologies to bear